Table 2. Selected geometric parameters $\left(\AA^{\circ},^{\circ}\right)$ for (6)

$\mathrm{Col}-\mathrm{C} 5$	1.808 (2)	MnI-C4	1.861 (2)
Col-C6	1.813 (2)	$\mathrm{MnI}-\mathrm{Cl} 10$	2.050 (2)
$\mathrm{Col}-\mathrm{C} 7$	1.822 (2)	Mnl-C9	2.107 (2)
$\mathrm{Col}-\mathrm{C} 9$	1.941 (2)	O8-C11	1.196 (2)
Col-Cl0	1.970 (2)	O9- Cl	1.331 (3)
$\mathrm{Col}-\mathrm{MnI}$	2.5468 (4)	$\mathrm{O} 9-\mathrm{Cl2}$	1.456 (3)
$\mathrm{MnI}-\mathrm{Cl}$	1.814 (2)	C8-C9	1.494 (3)
$\mathrm{Mnl}-\mathrm{C} 3$	1.838 (2)	C9-- 10	1.328 (3)
$\mathrm{Mnl}-\mathrm{C} 2$	1.844 (2)	$\mathrm{Cl} 0-\mathrm{Cll}$	1.474 (3)
C9-Col-C10	39.68 (8)	$\mathrm{C} 8-\mathrm{C} 9-\mathrm{MnI}$	135.5 (2)
C9- $\mathrm{Col}-\mathrm{Mnl}$	53.98 (6)	$\mathrm{Col}-\mathrm{C} 9-\mathrm{MnI}$	77.84 (7)
$\mathrm{ClO}-\mathrm{Col}-\mathrm{Mnl}$	52.10 (5)	C9-C10-C11	133.3 (2)
$\mathrm{C} 10-\mathrm{MnI}-\mathrm{C} 9$	37.22 (7)	C9-C10- Col	68.99 (12)
$\mathrm{ClO}-\mathrm{MnI}-\mathrm{Col}$	49.32 (5)	$\mathrm{Cll}-\mathrm{ClO}-\mathrm{Col}$	136.20 (14)
C9-Mnl-Col	48.17 (5)	$\mathrm{C} 9-\mathrm{C} 10-\mathrm{MnI}$	73.73 (12)
C11-O9-C12	115.9 (2)	$\mathrm{Cl1}-\mathrm{Cl} 0-\mathrm{Mnl}$	137.82 (14)
C10-C9-C8	138.1 (2)	$\mathrm{Col}-\mathrm{Cl}(-\mathrm{MnI}$	78.59 (7)
$\mathrm{C10}-\mathrm{C} 9-\mathrm{Col}$	71.34 (11)	$\mathrm{O} 8-\mathrm{Cl1-O9}$	124.5 (2)
C8-C9-Col	136.5 (2)	$\mathrm{O} 8-\mathrm{Cl1-C10}$	123.7 (2)
$\mathrm{C} 10-\mathrm{C}-\mathrm{Mnl}$	69.05 (11)	$\mathrm{O} 9-\mathrm{Cll}-\mathrm{ClO}$	111.8 (2)

Methyl H-atom positions for both (5) and (6) were calculated ($\mathrm{C}-\mathrm{H}=0.96$ and $0.97 \AA$, respectively) after the location of at least one H atom from the electron-density map. Three of the four methyl groups have disordered H -atom positions and their occupancies were fixed at 0.5 . All H atoms were treated with a riding model and the $U_{\text {iso }}$ value was defined as $1.5 U_{\mathrm{eq}}(\mathrm{C})$.

For both compounds, data collection: SMART (Siemens, 1995); cell refinement: SMART; data reduction: SAINT (Siemens, 1995); program(s) used to solve structures: SHELXTL (Siemens, 1995); program(s) used to refine structures: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Data was collected through the Ohio Crystallographic Consortium, funded by the Ohio Board of Regents 1995 Investment Fund (CAP-075), located at the University of Toledo, Instrumentation Center in A\&S, Toledo, Ohio. JAKB sincerely thanks Dr Ewa Skrzypczak-Jankun (University of Toledo) for assistance in using the CCD diffractometer system. KB gratefully acknowledges a Millenium Petrochemicals graduate fellowship.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: FR1210). Services for accessing these data are described at the back of the journal.

References

Beck, K., Alexander, J. J. \& Krause Bauer, J. A. (1998). Unpublished results.
Einstein, F. W. B., Manning, P., Peterson, L. K. \& Tyes, K. G. (1986). Inorg. Chim. Acta, 111, L49-51.
Gregson, D. \& Howard, J. A. K. (1983). Acta Cryst. C39, 1024-1027.
Khand, I. U., Knox, G. R., Pauson, P. L. \& Watts, W. E. (1971). J. Chem. Soc. Chem. Commun. pp. 975-977.
Khand, I. U., Knox, G. R., Pauson, P. L., Watts, W. E. \& Foremann, M. I. (1971). J. Chem. Soc. Chem. Commun. pp. 977-981.

Manning, P. J. \& Peterson, L. K. (1984). Inorg. Chim. Acta, 88, L5-6.
Orpen, A. G., Brammer, L., Allen, F. H., Kennard, O., Watson, D. G. \& Taylor, R. (1989). J. Chem. Soc. Dalton Trans. pp. S1-83.
Sheldrick, G. M. (1996). SADABS. Program for the Application of Absorption and Beam Corrections for Area Detector Data. University of Göttingen, Germany.

Siemens (1995). SMART (Version 4.05), SAINT (Version 4.05) and SHELXTL (Version 5.03). Programs for Data Collection, Processing and Refinement of Crystal Structures. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Went. M. J. (1997). Adv. Organomet. Chem. 41, 69-125.

Acta Cryst. (1999). C55, 2023-2026

\{[μ-Bis(salicylidene)-1,3-propanediaminato]-bis(4-methylpyridine)nickel(II)\}dichlorozinc(II) \dagger

Orhan Atakol, ${ }^{a}$ Flliz Ercan, ${ }^{\text {b }}$ Cengiz Arici, ${ }^{b}$ Hartmut Fuess ${ }^{c}$ and Ingrid Svoboda ${ }^{c}$
${ }^{a}$ Department of Chemistry, Ankara University; Tandogan 06100, Ankara, Turkey, ${ }^{b}$ Department of Physics Engineering, Hacettepe University, Beytepe 06532, Ankara, Turkey, and 'Strukturforschung, FB Materialwissenschaft, Technische Hochschule Darmstadt, Petersenstraße 23, D-64287
Darmstadt, Germany. E-mail: filiz@eti.cc.hun.edu.tr

(Received 10 December 1998; accepted 5 August 1999)

Abstract

The title compound, $\left[\mathrm{Ni}\left(\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{2}\right)\left(\mathrm{C}_{6} \mathrm{H}_{7} \mathrm{~N}\right)_{2}-\right.$ $\left\{\mathrm{ZnCl}_{2}\right\}$], is a heteronuclear dimeric complex. The Ni atom has an irregular octahedral environment involving two O atoms and two N atoms from the bis(salicyl-idene)-1,3-propanediaminate ligand in the equatorial plane, and two N atoms from the two 4 -methylpyridine groups in the apical positions. The $\mathrm{Ni}-\mathrm{O}-$ $\mathrm{Zn}, \mathrm{O}-\mathrm{Zn}-\mathrm{O}, \mathrm{Zn}-\mathrm{O}-\mathrm{Ni}$ and $\mathrm{O}-\mathrm{Ni}-\mathrm{O}$ angles in the bridged plane are $99.58(9), 80.59(8), 100.57$ (9) and $79.26(8)^{\circ}$, respectively. The $\mathrm{Ni} \cdots \mathrm{Zn}$ distance is

 3.0896 (9) A.
Comment

Dinuclear homo- or heterometal complexes with double oxygen bridges have subnormal magnetic moments due to super-exchange interactions between the bridged metal ions. The magnetic interactions depend on the immediate environment of the bridge, as well as on the ligand arrangement about the metal ions. Structural details of doubly oxygen-bridged homonuclear dimeric copper(II) complexes have been reported previously (Kato et al., 1964; Barclay \& Hoskins, 1965; Butcher \& Sinn, 1976; Kato \& Muto, 1988). Dinuclear and trinuclear homo- or heterometal complexes based on Schiff base

[^0]ligands have been the subject of considerable interest in our laboratories and we have reported the structures of $\left[\mathrm{Cu}_{2}\left(\mathrm{C}_{11} \mathrm{H}_{10} \mathrm{ClNO}_{2}\right)_{2}\right]$ (Tahir et al., 1996), $\left[\mathrm{Cu}_{2}\left(\mathrm{C}_{14} \mathrm{H}_{11}-\right.\right.$ $\left.\left.\mathrm{NO}_{2}\right)_{2}\right]$ (Ülkü, Ercan, Atakol, Ercan \& Gencer, 1997), $\mathrm{Ni}_{3}\left\{(\mathrm{SALPD})\left(\mathrm{CH}_{3} \mathrm{CO}_{2}\right)\left[\left(\mathrm{CH}_{3}\right)_{2} \mathrm{SO}\right]\right\}_{2}$ (Ülkü, Tahir et al., 1997), $\mathrm{Cd}\left\{\mathrm{Ni}(\mathrm{SALPD})\left(\mathrm{CH}_{3} \mathrm{CO}_{2}\right)\left[\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHNO}\right]\right\}_{2}$ (Ülkü, Ercan, Atakol \& Dinçer, 1997), $\left[\mathrm{Cu}_{2}\left(\mathrm{C}_{12} \mathrm{H}_{13}-\right.\right.$ $\left.\left.\mathrm{NO}_{2}\right)_{2}\right]$ (Atakol et al., 1997), $\left[\mathrm{Cu}_{2}\left(\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{NO}_{2}\right)_{2}\right]$ (Ülkü et al., 1998), $\mathrm{Ni}_{2}\left\{\mathrm{Cu}(\mathrm{SALPD})\left(\mathrm{NO}_{2}\right)\left[\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHNO}\right]\right\}_{2} \cdot-$ 2[($\left.\left.\mathrm{CH}_{3}\right)_{2} \mathrm{CHNO}\right]$ (Tahir et al., 1998), $\mathrm{Mn}\{\mathrm{Ni}(\mathrm{SALPD})-$ $\left.\left(\mathrm{CH}_{3} \mathrm{CO}_{2}\right)\left[\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHNO}\right]\right\}_{2}$ (Ercan \& Atakol, 1998), $\mathrm{Cd}\left\{\mathrm{Cu}(\mathrm{SALPD})\left(\mathrm{CH}_{3} \mathrm{CO}_{2}\right)\right\}_{2} \cdot \mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}_{2}$ (Ercan, Ülkü et al., 1998), $\mathrm{Cu}_{3}\left\{(\mathrm{SALPD})\left(\mathrm{CH}_{3} \mathrm{CO}_{2}\right)\right\}_{2} \cdot \mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}_{2}$ [Atakol et al., 1999; SALPD ${ }^{2-}$ is N, N^{\prime}-bis(salicylidene)-1,3propanediaminate], $\left[\mathrm{Cu}\left\{\mathrm{Zn}\left(\mathrm{C}_{23} \mathrm{H}_{21} \mathrm{I}_{2} \mathrm{~N}_{3} \mathrm{O}_{2}\right)\right\}\right]$ (Ercan, Aricl, Akay et al., 1999), $\left[\mathrm{Ni}\left\{\mathrm{Zn}\left(\mathrm{C}_{31} \mathrm{H}_{34} \mathrm{I}_{2} \mathrm{~N}_{4} \mathrm{O}_{2}\right)\right\}\right]$ (Aricl et al., 1999) and $\left[\mathrm{Cu}\left\{\mathrm{Zn}\left(\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{I}_{2} \mathrm{~N}_{2} \mathrm{O}_{2}\right)\right\}\right]$ (Ercan, Aricı, Ülkü et al., 1999). The magnetic properties are currently under investigation.

We describe here a new heteronuclear dimeric complex, $\left[\mathrm{Ni}(\mathrm{SALPD})\left(\mathrm{C}_{6} \mathrm{H}_{7} \mathrm{~N}\right)_{2}\left\{\mathrm{ZnCl}_{2}\right\}\right]$, (VIII), the structure determination of which was undertaken in order to permit a comparison of its bridging environment with those of similar dimeric systems.

(VIII)

The coordination around the $\mathrm{Ni}^{\mathrm{II}}$ ion in the heterodinuclear complex is an irregular octahedron involving two bridging O atoms and two N atoms from the SALPD ${ }^{2-}$ ligand in the equatorial plane (Fig. 1). In the axial positions of this irregular octahedron, there is an N atom from each of the two 4 -methylpyridine groups, i.e. N3 and N4. The distortion of the regular pyramids is revealed by the bond angles between the apical and equatorial donor atoms (Table 1). The value of this distortion (represented by τ) is 0.014 for the $\mathrm{Ni}^{1 \mathrm{II}}$ ion. $\tau\left[(\beta-\alpha) / 60^{\circ} ; \alpha\right.$ and β are the two largest angles around the central atom] is equal to 0 in a regular square pyramid (Addison et al., 1984; Uhlenbrock et al., 1996). The coordination plane composed of atoms $\mathrm{N} 1, \mathrm{~N} 2, \mathrm{O} 1$ and O 2 , and the bridging plane composed of atoms $\mathrm{Ni}, \mathrm{OI}, \mathrm{Zn}$ and O 2 have a dihedral angle of $0.44(9)^{\circ}$ between them. The $\mathrm{Ni}-\mathrm{Ol}-\mathrm{Zn}$ and $\mathrm{O} 1-\mathrm{Ni}-\mathrm{O} 2$ bridging angles are 99.58 (9) and $79.26(8)^{\circ}$, respectively. This dihedral angle, as well as the bridging angle, influences the magnetic properties of the systems. The $\mathrm{Ni} \cdots \mathrm{Zn}$ distance $[3.0896$ (9) A] is long
for a direct interaction. The $\mathrm{Ni}-\mathrm{O}-\mathrm{Zn}-\mathrm{O} 2$ bridging plane is approximately planar. The Ni atom is located -0.0025 (5) A from the coordination best plane.

Fig. 1. PLATON (Spek, 1998) drawing of (VIII) with the atomnumbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small circles of arbitrary radii.

The six-membered chelate ring composed of atoms $\mathrm{Ni}, \mathrm{N} 1, \mathrm{C}, \mathrm{C} 9, \mathrm{C} 10$ and N 2 has a boat conformation. The distances of two para-positioned boat atoms, Ni and C 9 , from their respective planes are 0.061 (5) and 0.532 (4) \AA. The coordination plane makes dihedral angles of 87.44 (8) and $89.10(6)^{\circ}$ with the N 3 and N4 4 -methylpyridine groups, respectively. A comparision of the dihedral angle (κ) between the bridging plane and the coordination plane around the Ni atom, along with related distance ranges and the bridging angle (φ), are given in Table 2 for eight dimeric metal complexes studied recently in this laboratory. The bond lengths and angles of the eight structures within the ligands show usual values.

Experimental

Ammonia solution (30 ml) was added to a solution of $\operatorname{bis}\left(N, N^{\prime}\right.$-salicylidene)-1,3-propanediamine ($0.565 \mathrm{~g}, 2 \mathrm{mmol}$) in hot ethanol (75 ml) and the mixture heated to boiling. A solution of $\mathrm{NiCl}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}(0.475 \mathrm{~g}, 2 \mathrm{mmol})$ in hot water (30 ml) was then added and the resulting mixture set aside. After 2 h , the light-green nickel complex was filtered off and dried at 413 K for 4 h . This complex ($0.338 \mathrm{~g}, 1 \mathrm{mmol}$) was dissolved in hot dioxane (80 ml). 4-Methylpyridine (0.7 ml) was added to this solution followed by $\mathrm{ZnCl}_{2}(0.136 \mathrm{~g}, 1 \mathrm{mmol})$ in hot methanol (10 ml). The resulting mixture was set aside for 4 d
and the light-brown crystals which formed were filtered off and dried in air. Because the structure has 4-methylpyridine groups, crystals decay after $3-4 \mathrm{~d}$ in air. If a big crystal is chosen, the undecayed part is bigger than the decayed part. On the other hand. crystals could not be cut because they were fragile.

Crystal data

$\left[\mathrm{NiZnCl}_{2}\left(\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{2}\right)\right.$ $\left(\mathrm{C}_{6} \mathrm{H}_{7} \mathrm{~N}\right)_{2}$]
$M_{r}=661.55$
Monoclinic
Cc
$a=9.069(5) \AA$
$b=19.378$ (6) A
$c=16.964$ (7) \AA
$\beta=105.15(5)^{\circ}$
$V=2878(2) \AA^{3}$
$Z=4$
$D_{x}=1.527 \mathrm{Mg} \mathrm{m}^{-3}$
D_{m} not measured
Data collection
Enraf-Nonius CAD-4 diffractometer
$\omega / 2 \theta$ scans
Absorption correction: empirical via ψ scans (Fair, 1990)
$T_{\text {min }}=0.678, T_{\text {max }}=0.748$
5629 measured reflections
2836 independent reflections (plus 2793 Friedel-related reflections)

Refinement

Refinement on F^{2}
$R(F)=0.029$
$w R\left(F^{2}\right)=0.076$
$S=1.11$
5629 reflections
413 parameters
H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0527 P)^{2}\right.$ $+1.0395 P]$
where $P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3$
$(\Delta / \sigma)_{\max }<0.001$

Mo $K \alpha$ radiation
$\lambda=0.71073 \AA$
Cell parameters from 25 reflections
$\theta=2.41-10.31^{\circ}$
$\mu=1.71 \mathrm{~mm}^{-1}$
$T=301$ (2) K
Prism
$0.98 \times 0.17 \times 0.17 \mathrm{~mm}$ Light brown

5473 reflections with
$I>2 \sigma(I)$
$\theta_{\text {max }}=26^{\circ}$
$h=-11 \rightarrow 11$
$k=-23 \rightarrow 0$
$l=-20 \rightarrow 20$
3 standard reflections frequency: 120 min intensity decay: 1.6%
$\Delta \rho_{\text {max }}=0.47 \mathrm{e}^{-3}$
$\Delta \rho_{\text {min }}=-0.65 \mathrm{e}^{-3}$
Extinction correction: SHELXL97
Extinction coefficient: 0.0023 (2)

Scattering factors from International Tables for X-ray Crystallography (Vol. IV)
Absolute structure:
Flack (1983)
Flack parameter $=0.016(9)$

Table 1. Selected geometric parameters $\left.\left(\AA^{\circ}\right)^{\circ}\right)$

$\mathrm{Ni} \cdots \mathrm{Zn}$	$3.0896(9)$	$\mathrm{O} 2-\mathrm{Ni}$	$2.022(2)$
$\mathrm{ClI}-\mathrm{Zn}$	$2.2110(16)$	$\mathrm{N} 1-\mathrm{Ni}$	$2.033(3)$
$\mathrm{Cl} 2-\mathrm{Zn}$	$2.2081(12)$	$\mathrm{N} 2-\mathrm{Ni}$	$2.033(2)$
$\mathrm{O} 1-\mathrm{Zn}$	$2.009(2)$	$\mathrm{N} 3-\mathrm{Ni}$	$2.209(2)$
$\mathrm{Ol}-\mathrm{Ni}$	$2.037(2)$	$\mathrm{N} 4-\mathrm{Ni}$	$2.179(2)$
$\mathrm{O} 2-\mathrm{Zn}$	$1.994(2)$		
$\mathrm{Zn}-\mathrm{Ol}-\mathrm{Ni}$	$99.58(9)$	$\mathrm{O} 1-\mathrm{Ni}-\mathrm{N} 4$	$89.88(9)$
$\mathrm{Cl}-\mathrm{O} 2-\mathrm{Zn}$	$129.99(18)$	$\mathrm{O} 2-\mathrm{Ni}-\mathrm{N} 3$	$90.62(10)$
$\mathrm{Cl}-\mathrm{O} 2-\mathrm{Ni}$	$128.95(18)$	$\mathrm{NI}-\mathrm{Ni}-\mathrm{N} 3$	$90.61(10)$
$\mathrm{Zn}-\mathrm{O} 2-\mathrm{Ni}$	$100.57(9)$	$\mathrm{N} 2-\mathrm{Ni}-\mathrm{N} 3$	$89.73(10)$
$\mathrm{O} 2-\mathrm{Ni}-\mathrm{N} 1$	$90.92(9)$	$\mathrm{OI}-\mathrm{Ni}-\mathrm{N} 3$	$90.52(9)$
$\mathrm{O} 2-\mathrm{Ni}-\mathrm{N} 2$	$169.38(9)$	$\mathrm{N} 4-\mathrm{Ni}-\mathrm{N} 3$	$179.16(10)$
$\mathrm{N} 1-\mathrm{Ni}-\mathrm{N} 2$	$99.69(10)$	$\mathrm{O} 2-\mathrm{Zn}-\mathrm{OI}$	$80.59(8)$

$\mathrm{O} 2-\mathrm{Ni}-\mathrm{Ol}$
$\mathrm{N} 1-\mathrm{Ni}-\mathrm{Ol}$
$\mathrm{N} 2-\mathrm{Ni}-\mathrm{OI}$
$\mathrm{O} 2-\mathrm{Ni}-\mathrm{N} 4$
$\mathrm{~N} 1-\mathrm{Ni}-\mathrm{N} 4$
$\mathrm{~N} 2-\mathrm{Ni}-\mathrm{N} 4$

Table 2. Structural data (\AA), bridging angles and dihedral angles (φ and $\kappa,^{\circ}$) for eight homo- and heterodinuclear metal complexes

Complex	$\begin{gathered} M(\mathrm{Cu}, \mathrm{Ni})- \\ \mathrm{O}_{\text {bridge }} \end{gathered}$	$\begin{gathered} M(\mathrm{Cu}, \mathrm{Ni}) \cdot \\ M(\mathrm{Cu}, \mathrm{Zn}) \end{gathered}$	φ	κ
(I)	1.941 (5)-1.950(4)	2.994 (2)	100.6 (2)	5 (1)
(II)	1.930 (1)-1.982 (9)	3.073 (2)	103.5 (4)	11.3 (8)
(III)	1.885 (3)-1.976 (3)	3.021 (2)	102.8 (1)	$\begin{gathered} 2.9(9)- \\ 8.0(3) \end{gathered}$
(IV)	1.938 (3)-1.955 (3)	3.047 (6)	103.4 (1)	12.7 (2)
(V)	1.973 (3)-1.974 (2)	3.1013 (7)	102.5 (1)-102.7 (1)	11.4 (4)
(VI)	2.030 (3)-2.039 (2)	3.0753 (7)	98.8 (1)-99.7 (1)	3.5 (9)
(VII)	1.939 (5)-1.949 (5)	3.0933 (7)	103.1 (2)-103.3 (2)	1.9 (3)
(VIII)	2.021 (2)-2.039 (2)	3.0896 (9)	100.63 (9)-102.63 (9)	0.44 (9)

Notes: (I) is $\left[\mathrm{Cu}_{2}\left(\mathrm{C}_{11} \mathrm{H}_{10} \mathrm{ClNO}_{2}\right)_{2}\right]$ (Tahir et al., 1996); (II) is [$\mathrm{Cu}_{2}-$ $\left(\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{NO}_{2}\right)_{2}$] (Ülkü, Ercan, Atakol, Ercan \& Gencer, 1997); (III) is $\left[\mathrm{Cu}_{2}\left(\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{NO}_{2}\right)_{2}\right]$ (Atakol et al., 1997); (IV) is [$\mathrm{Cu}_{2}\left(\mathrm{C}_{12} \mathrm{H}_{13}-\right.$ $\left.\left.\mathrm{NO}_{2}\right)_{2}\right]$ (Ülku et al., 1998); (V) is $\left\{\mathrm{Cu}\left\{\mathrm{Zn}\left(\mathrm{C}_{23} \mathrm{H}_{21} \mathrm{I}_{2} \mathrm{~N}_{3} \mathrm{O}_{2}\right)\right\}\right]$ (Ercan, Arci, Akay et al., 1999); (VI) is [$\mathrm{Ni}\left\{\mathrm{Zn}_{\left.\left(\mathrm{C}_{31} \mathrm{H}_{34} \mathrm{I}_{2} \mathrm{~N}_{4} \mathrm{O}_{2}\right)\right\} \text {] (Ancl }}\right.$ et al., 1999); (VII) is $\left[\mathrm{Cu}\left\{\mathrm{Zn}\left(\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{I}_{2} \mathrm{~N}_{2} \mathrm{O}_{2}\right)\right\}\right]$ (Ercan, Aricl, Ülkü et al., 1999); (VIII) is [$\left.\mathrm{NiZnCl} 2\left(\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{2}\right)\left(\mathrm{C}_{6} \mathrm{H}_{7} \mathrm{~N}\right)_{2}\right]$ (the title compound).
Data collection: CAD-4 EXPRESS (Enraf-Nonius, 1993). Cell refinement: CAD-4 EXPRESS. Data reduction: X-RED (Stoe \& Cie, 1996). Program(s) used to solve structure: SHELXS86 (Sheldrick, 1990). Program(s) used to refine structure: SHELXL93 (Sheldrick, 1993). Software used to prepare material for publication: SHELXL93.

[^1]
References

Addison, A. W., Rao, T. N., Reedijk, J., van Ryn, J. \& Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349-1356.

Arıcı, C., Ercan, F., Atakol, O., Akay, A. \& Ülkü, D. (1999). Acta Cryst. C55, 928-930.
Atakol, O., Arıcı, C., Ercan, F. \& Ülkü, D. (1999). Acta Cryst. C55, 511-513.
Atakol, O., Ercan, F., Ülkü, D. \& Yılmaz, N. (1997). Anal. Sci. 13, 1051-1052.
Barclay, G. A. \& Hoskins, B. F. (1965). J. Chem. Soc. pp. 1979-1991.
Butcher, R. J. \& Sinn, E. (1976). Inorg. Chem. 15, $1604-1608$.
Enraf-Nonius (1993). CAD-4 EXPRESS. Version 1.1. Enraf-Nonius, Delft, The Netherlands.
Ercan, F., Arcı, C., Akay, A., Atakol, O. \& Ülkü, D. (1999). Acta Cryst. C55, 925-928.
Ercan, F., Aricı, C., Ülkü. D., Atakol, O. \& Aksu, M. (1999). Acta Cryst. C55, 930-932.
Ercan, F. \& Atakol, O. (1998). Acta Cryst. C54, 1268-1270.
Ercan, F., Ülkü, D., Atakol, O. \& Dinçer, F. N. (1998). Acta Cryst. C54, 1787-1790.
Fair, C. K. (1990). MolEN. An Interactive Intelligent System for Crystal Structure Analysis. Enraf-Nonius, Delft, The Netherlands.
Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Kato, M., Jonassen, H. B. \& Fanning. J. (1964). Chem. Rev. 64, 99128.

Kato, M. \& Muto, Y. (1988). Coord. Chem. Rev. 92. 45-83.
Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.
Spek, A. L. (1998). PLATON. Molecular Geometry Program. Utrecht University, The Netherlands.
Stoe \& Cie (1996). X-RED. Data Reduction Program. Stoe \& Cie, Darmstadt, Germany.
Tahir, M. N., Ülkü, D., Atakol, O. \& Akay, A. (1996). Acta Crust. C52, 2676-2678.
Tahir, M. N., Ülkü, D., Atakol, O. \& Cakırer, O. (1998). Acta Crust. C54, 468-470.
Uhlenbrock, S., Wegner, R. \& Krebs, B. (1996). J. Chem. Soc. Dalton Trans. pp. 3731-3736.
Ülkü, D., Arıcı, C., Tahir, M. N., Atakol, O. \& Tastekin, M. (1998). Anal. Sci. 14, 455-456.
Ülkü, D., Ercan, F., Atakol, O. \& Dinçer, F. N. (1997). Acta Cṛst. C53, 1056-1057.
Ülkü, D., Ercan, F., Atakol, O.. Ercan, I. \& Gencer. A. (1997). Acta Cryst. C53, 179-181.
Ülkü, D., Tahir, M. N., Atakol. O. \& Nazır. H. (1997). Acta Crust. C53, 872-874.

Acta Cryst. (1999). C55, 2026-2028

A three-dimensional framework formed from cadmium(II) cyanide and 1-methylimidazole

Sock-Sung Yun, ${ }^{a *}$ Young-Plle Kim ${ }^{a}$ and Chong-Hyeak Kim ${ }^{\text {b }}$
${ }^{a}$ Department of Chemistry, College of Natural Science, Chungnam National University, Taejon 305-764, Korea, and ${ }^{6}$ Chemical Analysis Laboratory, Korea Research Institute of Chemical Technology, PO Box 107, Yusong, Taejon 305-600, Korea. E-mail: chkim@pado.krict.re.kr

(Received 12 August 1999; accepted 2 September 1999)

Abstract

The three-dimensional structure of octacyanotetrakis(1-methylimidazole- N^{3})tetracadmium(II) clathrate, $\left[\mathrm{Cd}_{4}-\right.$ $\left.(\mathrm{CN})_{8}\left(\mathrm{C}_{4} \mathrm{H}_{6} \mathrm{~N}_{2}\right)_{4}\right]$, contains three kinds of Cd atoms, i.e tetrahedral Cd 1 and octahedral Cd 2 and Cd 3 in a 2:1:1 ratio; atoms Cd 2 and Cd 3 lie on inversion centres. The Cd 1 and Cd 2 centres are coordinated by four and six cyano groups, respectively. The Cd3 centre is coordinated by two cyano groups and four 1-methylimidazole ligands. The three-dimensional framework provides hexagonal channels which are occupied by 1 -methylimidazole ligands coordinated to the Cd 3 centre.

Comment

The synthesis and characterization of polymeric multidimensional frameworks is of great current interest be-
cause they may be useful as catalysts, molecular sieves, optical materials etc (Haushalter \& Mundi, 1992). As a strategy for designing infinite frameworks using cyanometallate complex hosts, Iwamoto and co-workers (Iwamoto, 1991) have employed various complementary ligands for stabilizing multi-dimensional structures. They have obtained various types of polymeric structures, such as one-dimensional chains, two-dimensional layers and three-dimensional networks (Iwamoto, 1996). Recently, Kim (1996) has studied imidazole as a complementary ligand for designing novel multidimensional frameworks and reported the variations of ligating behaviour of the imidazole and host topology in the resulting multi-dimensional structures. As an extension of that study, we have introduced 1-methylimidazole as a complementary ligand. We report here the novel structure of octacyanotetrakis(1-methylimidazoleN^{3})tetracadmium(II) clathrate, $\left[\mathrm{Cd}_{4}(\mathrm{CN})_{8}\left(\mathrm{C}_{4} \mathrm{H}_{6} \mathrm{~N}_{2}\right)_{4}\right]$, (I).

(I)

As shown in Figs. 1 and 2, the structure of (I) has cyanide bridges between the three kinds of Cd atoms, i.e. tetrahedral Cd 1 and octahedral Cd 2 and Cd 3 in a 2:1:1 ratio. Cd1 is tetrahedrally coordinated by four cyano groups, Cd 2 is octahedrally coordinated by six cyano groups, and Cd 3 is octahedrally coordinated by two cyano groups and four 1-methylimidazole ligands. The tetrahedral Cd 1 centre is linked to three octahedral Cd2 and one octahedral Cd3 via cyanide bridging ligands, the octahedral Cd 2 centre is linked to six tetrahedral Cd 1 centres via cyanide bridging ligands, and the octahedral Cd3 centre is linked to two tetrahedral Cd 1 centres via cyanide bridging ligands and is also coordinated by four 1 -methylimidazole ligands. The $\mathrm{Cd}-\mathrm{C}$ and $\mathrm{Cd}-\mathrm{N}$ bond lengths and angles (Table 1) are similar to those reported previously (Kim, 1996). The geometry of the 1 -methylimidazole ligand is as expected.
As shown in Fig. 2, the three-dimensional host framework contains channels running in the b direction. These elongated hexagonal channels are occupied by the 1 -methylimidazole ligands coordinated to the Cd 3 centre. In this crystal structure, the 1-methylimidazole ligand appears to play two roles in building up the host framework; one is to block a coordination site of the Cd atom and the other is to occupy the channel space.

[^0]: \dagger Systematic name: dichloro- $2 \kappa^{2} \mathrm{Cl}$-bis(4-methylpyridine- $\left.1 \kappa N\right)-\mu$ -$\left\{2,2^{\prime}\right.$-[1,3-propanediylbis(nitrilomethylidyne)]diphenolato $\}-1 \kappa^{4} O . N$,$N^{\prime}, O^{\prime}: 2 \kappa^{2} O, O^{\prime}$-nickel(II)zinc(II).

[^1]: Supplementary data for this paper are available from the IUCr electronic archives (Reference: SK1264). Services for accessing these data are described at the back of the journal.

